Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add filters








Year range
1.
Gac. méd. Méx ; 158(2): 108-114, mar.-abr. 2022. tab, graf
Article in Spanish | LILACS-Express | LILACS | ID: biblio-1375536

ABSTRACT

Resumen Introducción: La fibromialgia (FM) es un síndrome no degenerativo caracterizado por dolor musculoesquelético crónico y generalizado; así como por alteraciones anímicas, de memoria y sueño. Objetivo: Buscar anticuerpos antineurales (AANeu) séricos en pacientes con FM para descartar etiología autoinmune. Métodos: Se aplicó el Cuestionario de Impacto en Fibromialgia (FIQ) y el Inventario de Depresión de Beck (BDI). La inmunorreactividad y el blanco reconocido por los sueros de pacientes con FM y sujetos sanos se analizó con inmunofluorescencia indirecta y Western blot. Resultados: Los valores de FIQ y BDI estuvieron significativamente alterados en los pacientes con FM, en comparación con los de los controles (FIQ, 70 ± 25 versus 12 ± 12, p < 0.0001; BDI, 17 ± 11 versus 4 ± 3, p < 0.0002). Solo cinco de 15 sueros de pacientes con FM tuvieron AANeu dirigidos específicamente contra las neuronas del núcleo vestibular medio del tronco encefálico; estos no se detectaron en los 14 sueros de los controles. Los AANeu reconocieron una proteína de 45 kDa. Conclusiones: El 30 % de los pacientes con FM tiene AANeu no descritos antes. Será necesario evaluar la inmunorreactividad antineural en una muestra más grande y determinar el papel de los AANeu en la fisiopatología de la FM.


Abstract Introduction: Fibromyalgia (FM) is a non-degenerative syndrome characterized by generalized, chronic musculoskeletal pain, as well as mood, memory and sleep disorders. Objective: To search for serum anti-neural antibodies (ANeuA) in patients with FM (FMP) in order to rule out autoimmune etiology. Methods: The Fibromyalgia Impact Questionnaire (FIQ) and BECK’s depression inventory (BDI) were applied. Immunorreactivity and the target recognized on the sera from FMPs and healthy subjects were analyzed by indirect immunofluorescence and Western blot. Results: Both FIQ and BDI values were significantly altered in FMPs in comparison with those of controls (FIQ, 70 ± 25 vs. 12 ± 12, p < 0.0001; BDI, 17 ± 11 vs. 4 ± 3, p < 0.0002). Only five out of 15 FMP sera had ANeuA specifically directed against neurons from the medial vestibular nucleus of the brainstem. This immunoreactivity was not detected in the sera from the 14 controls. ANeuA recognized a 45 kDa protein. Conclusions: 30% of FMPs have ANeuA that have not been described before. In future studies, it will be necessary for anti-neural immunoreactivity to be determined in a larger sample and for the role of ANeuAs in the pathophysiology of FM to be established.

2.
An. Fac. Med. (Perú) ; 78(2): 161-165, abr.-jun. 2017. ilus, tab
Article in Spanish | LILACS | ID: biblio-989253

ABSTRACT

Introducción. La infidelidad es producida por la ruptura de los acuerdos de la pareja; cuando existe violencia intrafamiliar, provoca en la mujer sintomatología psicológica que perturba su comportamiento afectivo, produciendo efectos colaterales en la familia en sus diversos contextos. Objetivo. Determinar las causas que producen infidelidad en las mujeres violentadas. Diseño. Estudio mixto de integración de procesos, de tipo exploratorio secuencial, derivativo. Lugar. Consejo de la Judicatura, Santa Elena, Ecuador. Participantes. 220 mujeres que acudieron a denunciar a su pareja por agresión. Intervenciones. Durante los meses de febrero a diciembre del 2015, se utilizó una entrevista a profundidad, con cuyos datos se elaboró el instrumento cuantitativo, que fue validado por jueces y expertos. Principales medidas de resultados. Infidelidad en el hogar e infidelidad en el trabajo. Resultados. En el proceso se identificaron dos categorías: infidelidad en el hogar e infidelidad en el trabajo. De los datos se obtuvo la sintomatología que determinaba las causas por las cuales las mujeres eran infieles en cada uno de los contextos. Un 43% de mujeres tenía un amigo con quien compartía su vida, 20% sufría insatisfacción sexual, 71% consideraba que sus relaciones sexuales eran aburridas, 29% era infiel por mantener su condición socioeconómica. Conclusiones. El contexto violento proporciona en la mujer vulnerabilidad emocional que le induce a buscar compensación a través de ilusiones que le conducen a la infidelidad, pero se mantiene con su pareja para conservar el bienestar personal y familiar.


Introduction: Infidelity is the product of breaking couple agreements. Family violence causes psychological symptoms that impact the woman's affective behavior and cause collateral effects in the family. Objective: To determine the causes that produce infidelity in battered women. Design: Mixed design study of process integration, sequential exploratory, derivative type. Setting: Judiciary Council, Santa Elena, Ecuador. Participants: 220 women who reported aggression by their partner. Interventions: From February to December 2015, in-depth interviews were applied, and with this data the quantitative instrument was developed and validated by judges and experts. Main outcome measures: Infidelity at home, and infidelity at work. Results: Two categories were identified: infidelity at home, and infidelity at work. The symptomatology determining the causes for women being unfaithful on each context was obtained. 43% of women had a male friend to share life with, 20% were sexually dissatisfied, 71% reported that their sexual relations were boring, and 29% were unfaithful in order to maintain their social economical condition. Conclusions: For women, the violence context produced emotional vulnerability that induced them to find compensation through diverse illusions conducing to infidelity; even so, they remained with their partner to keep personal and familiar welfare.

3.
Salud ment ; 35(5): 411-418, sep.-oct. 2012. ilus
Article in Spanish | LILACS-Express | LILACS | ID: lil-675549

ABSTRACT

The nervous, endocrine, and immune systems maintain permanent and concerted communication through humoral and neural pathways, which involves neurotransmitters like serotonin and noradrenaline; hormones like cortisol, corticosterone release hormone; and a wide range of inflammatory molecules and their corresponding receptors. Variations in the circulatory levels of these soluble mediators modulate several physiological processes and help to mantain homeostasis in the face of stressful stimuli, regardless whether they are physical like systemic bacterial, viral or parasitical infections, as well as tissular injuries or psychological stress, that is secondary to the individual's perception and processing. Chronic activation of neuro-immune-endocrine interactions induces numerical and functional changes in these systems and behavioral disorders. "Sickness behavior" is one the most studied behavioral disorders that is characterized by the presence of anhedonia, fatigue, psychomotor retardation, decreased appetite, altered sleep patterns, and pain-increased sensitivity. Based on the similarities between the behavioral symptoms of "sickness behavior" and major depression, it has been hypothesized that molecules like cytokines and other inflammatory factors could be involved in the pathophysiology of several neuropsychiatric disorders, such as depression, cognitive dysfunction, fatigue, anxiety and personality disorders as well as neurodegenerative diseases such as Parkinson and Alzheimer. The behavioral disorders in major depression can be induced by single or combined administration of proinflammatory cytokines as well as mitogens or infectious agents that induce significant secretion of wide range of inflammatory molecules. Variations in peripheral and central inflammatory mediators significantly affect the levels of neurotransmitters, such as glutamate, dopamine, and serotonin; p38 MAPK and IDO proteins. The latest data on the involvement of cytokines and neurotransmitters in metabolic pathways have provided various targets for pharmaceutical development and have established new treatment approaches for psychiatric disorders. All this advantages about molecular mecanism involved in behavioural changes will result in the short term in a better quality of life for patients.


Los Sistemas Nervioso, Endocrino e Inmunológico mantienen a través de la vía humoral y neuronal una comunicación permanente y concertada que incluye a las hormonas neurotransmisoras, las citocinas y a sus respectivos receptores expresados en las células que conforman estos tres sistemas. La variación de los niveles de estos mediadores solubles induce la regulación de varios procesos fisiológicos y media la respuesta de nuestro organismo ante la presencia de estímulos estresantes, tanto físicos como psicológicos. La activación crónica de la interacción neuroendocrinoinmunológica favorece la aparición de variaciones numéricas y funcionales en los tres sistemas involucrados y genera alteraciones de tipo conductual. Entre las alteraciones conductuales más estudiadas destaca el llamado "sickness behavior", que se caracteriza por la presencia de anedonia, fatiga, enlentecimiento psicomotor, disminución del apetito, alteraciones en el patrón del sueño y un incremento en la sensibilidad al dolor. Las similitudes entre los síntomas conductuales del "sickness behavior" y la depresión mayor han permitido establecer una hipótesis sobre la participación de las citocinas y otros factores inflamatorios en la fisiopatología de algunos trastornos neuropsiquiátricos como la depresión, la disfunción cognitiva, la fatiga, los trastornos de ansiedad, los de la personalidad y las enfermedades neurodegenerativas como las de Parkinson y de Alzheimer. Las alteraciones conductuales presentes en la depresión mayor pueden ser inducidas por la administración individual o conjunta de citocinas proinflamatorias, de mitógenos o por agentes infecciosos que inducen una importante secreción de moléculas inflamatorias. Las variaciones periféricas y centrales de los mediadores inflamatorios influyen significativamente sobre los neurotransmisores como el glutamato, la dopamina, la serotonina, la proteína p38 MAPK y la indolomina-2-3 dioxigenasa (IDO). Es por ello que actualmente las citocinas, los neurotransmisores al igual que las rutas metabólicas en las que participan son el blanco de nuevos tratamientos para algunos padecimientos psiquiátricos, lo que mejorará la calidad de vida para los pacientes.

4.
Salud ment ; 34(2): 139-147, mar.-abr. 2011.
Article in Spanish | LILACS-Express | LILACS | ID: lil-632800

ABSTRACT

The 2008 National Addiction Survey demonstrated the existence of 39 million alcohol drinkers, of whom 4.2 million are excessive drinkers and 4.8 million are alcohol dependents. No reports of the comorbidity of psychiatric disorders in alcohol consumers in our country exist. Nevertheless, 40% to 50% of alcohol-dependent patients from other countries have some sort of psychiatric disorder, such as major depression. Serotonergic function is a key mediator of mood states, impulsiveness, and addictive behavior, including alcohol consumption. Several studies have noted alterations in the serotonergic system in alcoholics (as demonstrated by an increase in the shooting frequency of raphe nuclei serotonergic neurons, an increase in serotonin levels in the accumbens nuclei, and a loss in serotonergic neurons in the raphe nuclei) and depressed patients (decreases in the density of serotonin reuptake transporter [5-HTT] and serotonin levels [5-HT]). Clinical studies have documented that excessive alcohol intake reduces 5-HT levels and that this condition potentiates psychiatric disorders, such as anxiety, major depression, and alcohol dependence. These data demonstrate an association between alcoholism, psychiatric disorders, and alcohol dependence. By molecular biology techniques, genetic risk factors have been identified and candidate genes, such as 5-HTT, have been selected. This gene is associated with a greater susceptibility to onset of alcohol-dependence and major depression. The 5-HTT gene lies in the SLC6A4 locus of 1 7q1 1.1-q12 and encodes a 600-amino-acid integral membrane protein. This transporter regulates serotonergic neurotransmission through removal of 5-HT from the synaptic space. Pharmacological research has shown that selective reuptake inhibitors (5-HTT blockers) reduce alcohol intake in alcohol-dependent and major depression patients. Serotonergic system receptors, such as 5-HTT, 5-HT1, and 5-HT2, are expressed in nervous system and immune system cells; thus it is likely that both systems have functional similarities. Due to this property, peripheral blood mononuclear cells (PBMCs) can be used to research neurodegenerative, psychiatric, and alcohol dependence disorders. The aim of this study was to assess 5-HTT expression levels in the PBMCs from alcohol-dependent patients and patients with comorbid alcohol-dependence and major depression disorder. Materials and methods The Outpatient Consultative Service from the Centro de Ayuda a Alcohólicos y Familiares (CAAF) and the Centro de Alcohólicos y Drogadictos <

La Encuesta Nacional de Adicciones 2008 reportó que en México existen 39 millones de personas que consumen alcohol y 4.8 millones presentan dependencia. A nivel mundial varios estudios indican que los pacientes con dependencia al alcohol (40 a 50%) presentan comorbilidad con algún tipo de padecimiento psiquiátrico. La función serotoninérgica es un mediador clave en los estados de ánimo, la impulsividad y las conductas adictivas, entre ellas el consumo de alcohol. Se ha reportado que el consumo excesivo de alcohol etílico disminuye los niveles de serotonina, aumenta la frecuencia de disparo de las neuronas serotoninérgicas en el núcleo del rafé y aumenta los niveles de serotonina en el núcleo accumbens. Las técnicas de biología molecular han permitido identificar factores de riesgo genético y se han seleccionado genes candidatos del sistema serotoninérgico, siendo uno de ellos el gen para el transportador de serotonina (5-HTT), el cual se ha demostrado que se encuentra asociado tanto a una mayor susceptibilidad para el establecimiento de la dependencia al alcohol como a la depresión mayor. Los receptores del sistema serotoninérgico como el 5-HTT, el 5-HT1 y el 5-HT2 se expresan tanto en las células del Sistema Nervioso como en las células del sistema inmunológico, lo que sugiere una similitud funcional de ambos sistemas. Es por ello que las células mononucleares de sangre periférica (PBMC) han sido utilizadas como un modelo de estudio en los trastornos de dependencia al alcohol y en los psiquiátricos. El objetivo de este estudio fue evaluar los niveles de expresión del gen 5-HTT en células mononucleares de sangre periférica de pacientes con dependencia al alcohol con y sin depresión mayor comórbida. En el Servicio de Consulta Externa del Centro de Ayuda a Alcohólicos y Familiares (CAAF) y en el Centro de Alcohólicos y Drogadictos <

5.
Salud ment ; 33(2): 179-196, mar.-abr. 2010. ilus
Article in English | LILACS-Express | LILACS | ID: lil-632761

ABSTRACT

The present paper describes several aspects of the biological activities, physiological and behavioral responses displayed by the most recent discovered opioid peptides: endomorphins. Endormorphins comprise two endogenous C-terminal amide tetrapeptides, named as endomorphin-1 (EM1; Tyr-Pro-Trp-Phe-NH2) and endomorphin-2 (EM2; Tyr-Pro-Phe-Phe-NH2), which were discovered a decade ago (1997) by Zadina's group. Initially, they reported the identification of two endogenous opioid peptides that displayed high binding affinities and selectivities for the µ-opioid receptor among other identified and cloned opioid receptors. These led authors to support the hypothesis that endomorphin peptides represent the endogenous ligand agonists for the µ-opioid receptor. Both peptides were identified and isolated from bovine and human brains. They consist of four amino acids that share a 75% structural homology among amino acids, and which display the structural α-amidated form of C-terminal -Phe- residue, as demonstrated for many other bioactive neuropeptides. These peptides are structurally distinct from other endogenous opioid substances identified in the brain of mammals, although they share some similarities with other amide terapeptides such as Tyr-W-MIF-1, found also in the mammalian brain. Here, we review the structure-relationship activity of both endomorphin molecules comparing their binding properties to different opioid receptors. Both EM1/EM2 peptides appear to be vulnerable to enzymatic degradation when exposed to the activities of different proteolytic enzymes, as occurs with many other neuroactive peptides found in the SNC of mammals. Immunohistochemical studies showed the wide and asymmetric distribution of both EM1-2 peptides in the brain, leading to the extensive pharmacological, cellular, and physiological studies that demonstrated the wide and varied bioactivities displayed by these peptides at both central and peripheral tissues. These studies led several authors to suggest the potential endogenous role of these peptides in major physiological processes (e.g. analgesia or antinociception). Based on the generation of specific (rabbit) polyclonal antibodies and the use of combined radioimmunoassay (RIA) techniques and immunohistochemical procedures, it was shown the wide distribution of EM1-2-LI (endomorphin1-2-like immunoreactivities) throughout the brain of different species (e.g. rat, primate, human), particularly co-localized in specific areas where µ-opioid receptor has been shown to be expressed. IHC mapping of endomorphin material in the CNS showed a parallelism with the neuroanatomical distribution of other endogenous opioid peptides (e.g. Met/Leu-enk, Dynorphin A, β-endorphin) previously reported. These studies showed for instance that, whereas EM1-LI was shown to be widely and densely distributed throughout the brain, particularly in forebrain structures (e.g. nucleus accumbens [NAc]; cortex [Cx]; amygdale [AMG]; thalamus [Th], the hypothalamus [Hyp], the striatum [CPu]), including the upper brainstem (BS); and dorsal root ganglia (DRG); EM2-LI is highly expressed in spinal cord and lower brainstem. Interesting enough is the demonstration of the expression of EM1-2-LI outside the CNS (e.g. spleen, thymus and blood), and detected in immune cells (e.g. macrophages/monocytes, lymphocytes, and polymophonuclear leucocytes) surrounding inflammatory foci. Pharmacological studies showed that these peptides displace with high potency several µ-opioid receptor ligands agonists in a concentration-dependent manner. Moreover, EM1-2 peptides have been shown to modulate the release of several conventional transmitters from neurons (e.g. DA, NA, 5-HT, ACh) besides on active neurohormones. Additionally, in vitro and in vivo studies showed that both EM-1/EM-2 peptides produce their pharmacological and biological effects by stimulating either µ1 or µ2-opioid receptors, which mediate the distinct pharmacological activities detected for each peptide. Cellular studies showed that both EM-1/EM-2 peptides induce a potent granule/vesicle endocytosis and trafficking of µ-opioid receptor in cells transfected with the µ-opioid receptor cDNA; following some endocytosis responses and µ-opioid receptor trafficking mechanisms shown in enteric neurons; cells previously reported to express naturally µ-opioid binding sites on cells. Endomorphins have been shown to induce potent antinociceptive responses after ICV or IT administration into mice; to modulate nociceptive transmission and pain sensation into the brain after stimulating peripheral nociceptors on primary neuronal afferents; and to generate cross-tolerance between endomorphin peptides and between EM1 and opiate compounds, such as morphine.


Este artículo resume varios aspectos de las múltiples actividades biológicas, celulares, efectos farmacológicos, respuestas fisiológicas y conductuales de dos nuevas sustancias peptídicas de naturaleza opioide, descubiertas recientemente y denominadas endomorfinas. Las endomorfinas son dos péptidos opioides, clasificados como endomorfina-1 (EM1, Tyr-Pro-Trp-Phe-NH2) y endomorfina-2 (EM2, Tyr-Pro-Phe-Phe-NH2), cuyas secuencias peptídicas fueron identificadas y aisladas del cerebro de bovino y humano por el grupo de Zadina en 1997. Estudios de unión radioligando-receptor demostraron que estos péptidos se unen con alta afinidad de unión al receptor opioide µ en relación con su capacidad de unión a otros subtipos de receptores opioides (kappa [κ], delta [δ] ), previamente identificados en el SNC de mamíferos. Ambos péptidos están compuestos por cuatro aminoácidos y son estructuralmente distintos de las demás sustancias opioides endógenas conocidas. Esta revisión detalla con precisión diversos aspectos de la farmacología y actividades celulares de estos opioides y sus implicaciones en la modulación de distintas circuitos o vías neurales y funcionamiento del SNC de los mamíferos, respectivamente. Los estudios relacionados con la función estructura-actividad de estos péptidos han mostrado que, al igual que la mayoría de los péptidos bioactivos endógenos de naturaleza opioide y no opioide, son vulnerables a la escisión peptídica por cortes enzimáticos mediante la exposición a distintas enzimas proteolíticas que pudiesen participar en la degradación endógena de las endomorfinas, y la obtención de diversos productos de degradación. Asimismo, este artículo menciona la amplia distribución neuroanatómica que poseen las endomorfinas en distintas regiones del cerebro, particularmente en aquellas que regulan el procesamiento y la transmisión de la información nociceptiva y que, por tanto, reflejan el papel potencial de estos péptidos en procesos fisiológicos de analgesia, entre muchos otros (memoria y otro aprendizaje). En este contexto, diferentes estudios basados en el empleo de ensayos inmunológicos (radioinmunoensayos [RIA] y técnicas de inmunohistoquímica [IHC]) que requieren el uso de anticuerpos específicos generados contra las secuencias consenso de las endomorfinas mostraron una amplia distribución de material inmunoreactivo a endomorfina (vg., EM1-LI, EM2-LI) en tejidos neurales de humano, bovino y roedores. Por ejemplo, la EM1-LI mostró una distribución relativamente abundante en una gran mayoría de las regiones del SNC de mamíferos estudiados, particularmente en la región rostral y superior del tallo cerebral, así como en el núcleo accumbens (NAc), la corteza prefrontal y frontal (PFCx), la amígdala (AMG), el tálamo (TH), el hipotálamo (HPT), el estriado (CPu) y fibras nerviosas de la raíz del ganglio dorsal (DRG). En contraste, la expresión de EMZ mostró ser muy abundante en la región de la médula espinal y en la región caudal del tallo cerebral. La distribución de material inmunoreactivo a EM1-2 en el SNC de mamíferos mostró similitudes en cuanto a la distribución neuroanatómica reportada para otros péptidos opioides endógenos, previamente identificados (vg., encefalinas, dinorfinas, endorfinas). Así mismo, estudios paralelos lograron identificar la presencia de EM1-2-LI en órganos periféricos (vg., bazo, timo, células inflamatorias del tipo de macrófagos-monocitos, linfocitos y leucocitos PMN) y en plasma. Más aún, diversos estudios farmacológicos han mostrado que las actividades biológicas y respuestas fisiológicas de las EM1-2 están mediadas a través de la estimulación de los subtipos de receptores opioides µ1 y µ2. Estudios de inmunohistoquímica (IHC) demostraron la colocalización del receptor opioide µ y las EM1-2 en diversas regiones del SNC de mamiferos. Esto ha permitido proponer que las EM1-2 representan una nueva familia de péptidos opioides con funciones neuromoduladoras relevantes en el SNC, las cuales intervienen en la regulación de los procesos biológicos de percepción del dolor; respuestas de estrés; funciones límbicas de placer y recompensa inducidas por incentivos naturales y/o sustancias psicotrópicas; funciones de estado de alerta y vigilia, funciones cognitivas (de aprendizaje y memoria) y actividades de regulación neuroendócrina. Además, diversos estudios celulares han mostrado que ambos péptidos opioides son capaces de inducir la internalización aguda o endocitosis del receptor opioide µ en células somáticas transfectadas con el ADN (ADNc) que codifica este mismo receptor opioide. Al igual que otros péptidos opioides (v.g., encefalinas), diversos estudios mostraron el catabolismo enzimático de estos péptidos amidados mediante la actividad de enzimas proteolíticas (v.g., carboxipeptidasa Y, aminopeptidasa M), lo que ha permitido sugerir que estos péptidos opioides son degradados por rutas de degradación enzimática similares que rigen para múltiples péptidos bioactivos moduladores en el SNC de los mamíferos. Al igual que otros péptidos endógenos, ambas endomorfinas mostraron la capacidad de modular la liberación neuronal de neurotransmisores (DA, NA, 5-HT, ACh) y hormonas peptídicas en áreas específicas del cerebro de los mamíferos. Asimismo, ambos péptidos mostraron una capacidad de generar efectos antinociceptivos potentes en forma dosis-dependiente posterior a su administración ICV o IT en animales experimentales, además de generar respuestas de tolerancia cruzada entre ambas endomorfinas y/o entre la EM1 y alcaloides opiáceos del tipo de la morfina.

7.
Salud ment ; 30(6): 13-19, nov.-dic. 2007.
Article in Spanish | LILACS | ID: biblio-986045

ABSTRACT

resumen está disponible en el texto completo


Summary: Inflammation is a normal response caused by physical stress like infection, injury and trauma; and processive or psychological stress like in psychiatric diseases such as major depression, schizophrenia and posttraumatic stress. The host responds with a complex series of immune, endocrine and nervous reactions to face the stressful stimuli named neuroendocrine immune interaction. These interactions help us to maintain the homeostasis under stressful stimuli. Stress is a physicochemical or emotional process that induces tension. This process promotes the release of proinflammatory cytokines, hormones such as the corticotrophin-release hormone (CRH) and cortisol, and a wide number of neurotransmitters that are together responsible for some behavioral alterations. Both systemic and psychological stress elicits an equivalent response in an organism. Particularly, the onset of inflammation is characterized by release of pro-inflammatory mediators including tumor necrosis factor (TNF)-α, interleukin (IL)-1, adhesion molecules, vasoactive mediators, and reactive oxygen species. The early release of pro-inflammatory cytokines by a widely variety of immune and no-immune cells has a pivotal role in triggering the local inflammatory response. Apart from their involvement in local inflammation, TNF-α and IL-1β are signal molecules for activation of brain derived neuroendocrine and immunomodulatory responses. Excessive production of cytokines, such as TNF-α and IL-1β however can be more injurious than the inciting event, initiating diffuse coagulation, tissue injury, hypotension, and death. The inflammatory response is balanced by anti-inflammatory molecules like the cytokines IL-10 and IL-4, soluble TNF receptors, IL-1 receptor antagonists, and transforming growth factor (TGF)-β. Neuroendocrine pathways, such as the hypothalamus-pituitary-adrenal (HPA) axis and the sympathetic division of the Autonomic Nervous System (SNS) control the inflammation process by triggering anti-inflammatory balancing mechanisms. The brain can monitor immune status and sense peripheral inflammation through two main pathways: neural and humoral. The neural mechanism relies upon activation of vagus nerve afferent sensory fibers that signal the brain that inflammation is occurring. Stressful stimuli activate vagal afferents either directly by cytokines released from dendritic cells, macrophages, and other vagal-associated immune cells, or indirectly through the chemoreceptive cells located in vagal paraganglia. The transmission of cytokine signals to the brain through the vagal sensory neurons depends upon the magnitude of the stressful challenge. Subdiaphragmatic vagotomy inhibits the stimulation of the HPA axis and noradrenaline (NA) release in hypothalamic nuclei in response to intraperitoneal administration of endotoxin or IL-1β. Intravenous endotoxin administration induces expression of the neural activation marker c-Fos in the brainstem medulla, regardless of the integrity of the vagus nerve. Vagotomy fails to suppress high dose endotoxininduced. IL-1β immunoreactivity in the brain and increases blood corticosterone levels. It is likely that the vagal afferent neural pathway plays a dominant role in mild to moderate peripheral inflammatory responses, whereas acute, robust inflammatory responses signal the brain primarily via humoral mechanisms. By other hand, humoral pathway are supported by a large body of evidence, especially in cases of systemic immune challenge; circulatory cytokines like IL-1 β and TNF-α can cross the blood-brain barrier and enter cerebrospinal fluid and the interstitial fluid spaces of the brain and spinal cord by a saturable carrier mediated mechanism that may function only at very high plasma cytokine concentrations. Cytokines also can bind to receptors at the surface of the endothelium of the brain capillaries and can enhance the synthesis and release of soluble mediators such as prostaglandins and nitric oxide, which diffuse into the brain parenchyma and modulate the activity of specific groups of neurons. It has been suggested that prostaglandins mediate fever and HPA axis activation. Cytokine-to-brain communication also may occur via circumventricular organs that lack normal blood-brain barrier function. Among the circumventricular organs, the AP (area postrema) appears to represent the best candidate for such a transduction site. The AP is located in the floor of the caudal fourth ventricle and dendrites of neurons in the NTS (nucleus tractus solitarius) and DMN (dorsal motor nucleus) penetrate both the AP and floor of the fourth ventricle. The close proximity of AP to NTS and RVM (rostral ventrolateral medulla) and the existing neural connections provide a way of signaling the SNS and HPA axis. Cytokine-induced production of prostaglandins within the AP, NTS, and RVM may activate the catecholamine projections to the PVN, resulting in subsequent HPA axis activation. This is one possible interaction between the neural and humoral mechanisms of immune to brain communication through which the brain mediates anti-inflammatory responses. Apart from their function in signaling the brain for immunomodulatory responses, cytokines play a multifunctional role in brain injury and neurodegenerative diseases. Restoration of homeostasis as a logical resolution of inflammation does not always occur. For instance, a lack of adequate inflammatory responses may result in increased susceptibility to infections or cancer. On the other hand, excessive responses are associated with autoimmune diseases, diabetes, sepsis, psychiatric diseases with an important inflammatory response like major depression or schizophrenia and other debilitating conditions. When control of local inflammatory responses is lost, pro-inflammatory mediators can spill into the circulation, resulting in systemic inflammation that may progress to shock, multiple organ failure, and death. A recent discovery, showed that a novel neuroimmunomodulatory pathway that interface the brain and the immune system, referred as to the autonomic cholinergic anti-inflammatory pathway, mediate inhibitory responses during inflammation possibly by recruiting central mechanisms that modulate systemic or peripheral inflammatory responses. Still unclear, this neural circuit has been implicated in promoting sort of psychotherapeutical activities such as hypnosis, meditation, prayer, biofeedback, including acupuncture, but this mechanims still remain elusive. The sympathetic and parasympathetic parts of the Autonomic Nervous System rarely operate alone; autonomic responses represent the interplay of both parts. A link between the parasympathetic part of the Autonomic Nervous System and immunoregulatory processes was suggested, when alleviation of T-lymphocyte cytotoxicity by muscarinic cholinergic stimulation was described. Communication between the immune, nervous, and endocrine systems is essential for host defense and involves a variety of mediators including cytokines, neurotransmitters, hormones, and humoral factors. The influence of the brain on immune function and the mechanisms involved in these interactions have been elucidated over the past 3 decades, however, two important questions arise when describing the brain-derived immunomodulation: How is the specific brain initially signaled by cytokines to trigger corresponding neural and neuroendocrine responses?; and: How is immunomodulation achieved through these mechanisms? This review outlines brain-related control mechanisms of immune function in the regulation of inflammation.

SELECTION OF CITATIONS
SEARCH DETAIL